Influence of botanical extracts in the texture profile of shampoo formulations

Letícia Nakamura Silva¹, Marcella Gabarra Almeida Leite¹, Gabriela Maria D’Angelo Costa¹, Patricia Maria Berardo Gonçalves Maia Campos¹*

¹School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil

Abstract

Background: Each day, even more consumers are concerned about hair care, once its appearance influences the self-perception and, consequently, the quality of life. Nowadays, another preoccupation is the search for cosmetic products with natural raw materials. In this context, botanical extracts have been used as a natural active ingredient in cosmetic formulations to attend the demand of the consumer. The texture profile evaluation helps to find the best formulation that will have more acceptance in the market. In this context, this study aimed to evaluate the influence of three botanical extracts on the texture profile of shampoo formulations.

Materials and Methods: A shampoo formulation was developed and added or not (Vehicle – V) with Hamamelis virginiana leaf extract (F1), Camellia sinensis leaf extract (F2) and Paullinia cupana extract – Guarana extract (F3). The analysis of the texture profile was performed using a TA.XT Plus Texture Analyzer (Stable Microsystems, Surrey UK). The formulations were evaluated in terms of hardness and spreadability, and the parameters calculated were hardness, adhesiveness, cohesiveness, elasticity, gumminess, compressibility, firmness and work of shear.

Results: The obtained results showed that the botanical extracts decreased the hardness, firmness, and work of shear of the shampoo formulations, it was also observed an increase of elasticity. Comparing with the vehicle, the reduction of values of hardness and work of shear are desirable parameters, such as the increase of benefits of elasticity, once they are related to the formulation spreadability and softness. When comparing the botanical extracts, the Paullinia cupana extract promoted a decrease in the adhesiveness, while Camellia sinensis and Hamamelis virginiana increased this parameter. It was also observed smaller values of hardness and high elasticity, even though the firmness and work of shear did not present significant differences among them.

Conclusions: In conclusion, even with the decrease of the firmness, the formulations with the extracts showed a good performance in other parameters, such as hardness, elasticity, and work of shear. Therefore, the formulation with guarana extract can be considered the best formulation due to the smaller values of hardness, and higher values of adhesiveness and elasticity.

Keywords: Texture profile evaluation, Botanical extracts, Paullinia cupana extract, Camellia sinensis extract, Hamamelis virginiana extract
the treatment of dermatological disorders because of its astringent and anti-inflammatory properties.5,7 *H. virginiana* compounds are hydroxycinnamic acids, flavonoids, quercetin, kaempferol, caffeic acid, quinic acid, and gallic acid. Due to its composition, *H. virginiana* has strong antioxidant activity.8

Camellia sinensis is native to South and Southeast Asia, but nowadays, it is cultivated even in tropical and subtropical regions. Tea is known by its pharmacological properties due to its components mainly the alkaloids, as caffeine and catechins. The catechins are divided into 4 primary compounds epicatechin (EC), epicatechin gallate (ECG), epigallocatechin (EGC), epigallocatechin gallate (EGCG), and 4 secondary compounds, catechin (C), catechin gallate (CG), gallocatechin (GC), and gallocatechin gallate (GCG). *C. sinensis* has other components including fats, amino acids, vitamins, minerals, proteins, and sterols. Studies showed that tea could act as antimutagenic, anticarcinogenic and antiastrogenic, and for this reason, it has become an interesting research material.9,10

The texture analysis has an essential role in the Research and Development (R&D) of cosmetic products, once it can be helpful in the design of new products and contributes to find the right sensorial to a product according to its purpose.10,11 Today, the correlation between theoretical and sensory properties is known, and it's considered a valuable tool to understand consumer preferences once their choices generally are based in efficacy and by the pleasure given in terms of texture.10,12 Also, instrumental methods can be correlated to sensorial tests, and they are preferred by its objectivity and time saving.10,13 The texture profile evaluation helps the industry to find the best formulation that will have more acceptance in the market and contributes to choosing the best raw materials according to each cosmetic product.14

Thus, considering the importance of texture analysis and the market demand, evaluation of shampoo formulations with botanical extracts can be attractive to the design of new products that attend consumers’ preferences.

Objective

This study aimed to evaluate the influence of the Guarana (*Paullinia cupana*), green tea (*Camellia sinensis*), and Hamamelis (*Hamamelis virginiana*) extracts in the texture profile of shampoo formulations.

Materials and Methods

Development of Formulations

Four shampoo formulations were developed and added or not (Vehicle – V) with Guarana (*Paullinia cupana*) extract (F1), green tea (*Camellia sinensis*) leaf extract (F2) and Hamamelis (*Hamamelis virginiana*) leaf extract (F3). The raw materials used in shampoo were TEA lauryl sulfate, disodium laureth-sulfosuccinate, cocamide DEA, sodium chloride, glycerin, panthenol, disodium EDTA, and sodium hydroxide to correct pH to 6.5.

Texture Profile Evaluation

The texture profile analysis was performed using a TA.XT Plus Texture Analyzer (Stable Microsystems, Surrey UK). The formulations were evaluated in terms of hardness and spreadability, and the parameters calculated were hardness, adhesiveness, cohesiveness, elasticity, gumminess, compressibility, firmness and work of shear. The accessory used for the hardness analysis was a cone shaped acrylic probe with a 45º angle and for the spreadability test the TTC Spreadability rig HDPR. The measures were made five times and in triplicate respectively and were performed at room temperature.

Statistical Analysis

The results were analyzed using the software GrandPad Prism 6. ANOVA and unpaired \(t \) tests were used to compare the formulations.

Results and Discussion

The obtained results showed that the botanical extracts decreased the hardness (Table 1), firmness (Table 2) and work of shear (Table 3) of the shampoo formulations, it was also observed an increase of elasticity (Table 1). Comparing with the vehicle, the reduction of values of hardness and work of shear are desirable parameters, such as the increase of elasticity, once they are related with the formulation spreadability and softness.15,13 Smaller values of hardness indicate a formulation easy to spread, and higher values of elasticity means a soft formulation, which are desirable parameters for cosmetic formulations.13 The formulation containing *Paullinia cupana* extract presented a smaller value for hardness and the formulation containing *Hamamelis virginiana* extract presented a higher value for elasticity (Table 1). Low values of adhesiveness (Table

Table 1. Hardness analysis results

<table>
<thead>
<tr>
<th></th>
<th>Vehicle (V)</th>
<th>Paullinia cupana (F1)</th>
<th>Camellia sinensis (F2)</th>
<th>Hamamelis virginiana (F3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness</td>
<td>26.08</td>
<td>23.9</td>
<td>24.64</td>
<td>24.68</td>
</tr>
<tr>
<td>Adhesiveness</td>
<td>285.0568</td>
<td>280.3232</td>
<td>298.2244</td>
<td>303.6908</td>
</tr>
<tr>
<td>Cohesiveness</td>
<td>-0.467125</td>
<td>-0.4655706</td>
<td>-0.524261</td>
<td>-0.5555715</td>
</tr>
<tr>
<td>Elasticity</td>
<td>-1.8376849</td>
<td>-2.4588974</td>
<td>-2.149919</td>
<td>-2.7266992</td>
</tr>
<tr>
<td>Compressibility</td>
<td>194.295</td>
<td>191.272</td>
<td>195.631</td>
<td>195.228</td>
</tr>
</tbody>
</table>

1. Silva et al.
3. Botanical extracts effects on shampoo formulation
Table 2. Spreadability analysis – Firmness results

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Paullinia cupana</th>
<th>Camellia sinensis</th>
<th>Hamamelis virginiana</th>
</tr>
</thead>
<tbody>
<tr>
<td>69,38</td>
<td>51,49</td>
<td>51,88</td>
<td>52,03</td>
</tr>
<tr>
<td>70,38</td>
<td>50,18</td>
<td>52,57</td>
<td>52,34</td>
</tr>
<tr>
<td>69,84</td>
<td>50,34</td>
<td>53,58</td>
<td>54,58</td>
</tr>
</tbody>
</table>

Table 3. Spreadability analysis – work of shear results

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Paullinia cupana</th>
<th>Camellia sinensis</th>
<th>Hamamelis virginiana</th>
</tr>
</thead>
<tbody>
<tr>
<td>55,36</td>
<td>36,80</td>
<td>34,68</td>
<td>36,10</td>
</tr>
<tr>
<td>48,78</td>
<td>36,15</td>
<td>34,17</td>
<td>36,29</td>
</tr>
<tr>
<td>49,07</td>
<td>34,34</td>
<td>36,41</td>
<td>36,01</td>
</tr>
</tbody>
</table>

1) are also desirable in a cosmetic formulation. When comparing the botanical extracts, the Paullinia cupana extract promoted a decrease in the adhesiveness, while Camellia sinensis and Hamamelis virginiana increased this parameter. The parameter firmness and work of shear did not present a significant difference among the botanical extracts. All parameters showed significant differences comparing with the vehicle.

Conclusions
According to obtained results, the formulations with the extracts showed a good performance in the evaluated parameters, such as hardness, elasticity, and work of shear, even with the decrease of the firmness parameter. Therefore, the formulation with guarana extract showed more pronounced results once presented smaller values of hardness and higher amounts of adhesiveness and elasticity when compared to the formulations added with the other extracts under study.

Competing Interests
None.

Founding Sources
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and São Paulo Research Foundation (FAPESP).

References